⇒ <参考>デジタル制御:最初の最初 ③
このデジタル制御におけるプラントの離散化は一般化して書くとShalom D. Ruben先生の資料をお借りすると下記のように表せます。
Shalom D. Ruben UCLA -Winter 2011 - MAE 171B Digital Control of Physical Systems Chapter 4 - Discrete-Time System Representation http://ecee.colorado.edu/shalom/DTRep.pdf |
したがって、この出力をサンプリング(A/D変換)した結果をスター変換で表すと
(サンプリング周期 T[sec])\[\begin{aligned} Y^*(s) &= \frac{1}{2 \pi i} \lim_{T \to \infty}\int_{c - iT}^{c+iT}Y(\sigma)\frac{1}{1-e^{-T(s-\sigma)}} d\sigma \\ &= \frac{1}{2 \pi i} \lim_{T \to \infty}\int_{c - iT}^{c+iT}G_{p}(\sigma) \cdot G_{ZOH}(\sigma) \cdot U^*(\sigma)\frac{1}{1-e^{-T(s-\sigma)}} d\sigma \\ &= \Bigl(\frac{1}{2 \pi i} \lim_{T \to \infty}\int_{c - iT}^{c+iT}G_{p}(\sigma) \cdot G_{ZOH}(\sigma) \frac{1}{1-e^{-T(s-\sigma)}} d\sigma \Bigr) U^*(s) \end{aligned}\]
Note: 文献[1]の式(4.3)
となるから離散系にも伝達関数を定義できて、$ z = e^{sT} $ としてZ変換と紐づければ\[\begin{aligned}
\mathcal{Z}[G(z)] \equiv \frac{Y(z)}{U(z)} &= \mathcal{Z}[G_{p}(s) \cdot G_{ZOH}(s)] \\
&= (1-z^{-1}) \mathcal{Z}[\frac{G_{p}(s)}{s}]
\end{aligned}\]
Note: 文献[1]の式(4.10)
以下では、このD/A変換(ZOH)とプラントを直列にしたものを $ G(z) $の列とします。
Z変換表 : デジタル制御変換表
プラント伝達関数 $ G_p(s) $ | デジタル制御伝達関数 $ G(z) $ (サンプリング周期 T[sec]) | |
積分系 | \[\frac{1}{s} \] | \[\frac{T}{1-z^{-1}}\] |
1次遅れ系
| \[\frac{1}{\tau s+1} \] | \[\frac{(1-e^{-\frac{T}{\tau}})z^{-1}}{1-e^{-\frac{T}{\tau}}z^{-1}} \] |
\[\frac{\omega}{s+\omega} \] | \[\frac{(1-e^{-\omega T})z^{-1}}{1-e^{-\omega T}z^{-1}} \] | |
2次遅れ系 $ 0 < \zeta < 1 $ | \[\frac{\omega^2}{s^2+2\zeta \omega s + \omega^2}\] | \[\frac{[1-\frac{e^{-\zeta \omega T}}{\sqrt{1-\zeta^2}}sin(\omega*\sqrt{1-\zeta^2}T+\phi)]z^{-1}+[e^{-2\zeta \omega T}+\frac{e^{-\zeta \omega T}}{\sqrt{1-\zeta^2}}sin(\omega \sqrt{1-\zeta^2}T-\phi)]z^{-2}}{1-2e^{-\zeta \omega T}cos(\omega \sqrt{1-\zeta^2} T)z^{-1}+e^{-2 \zeta \omega T}z^{-2}}\]ただし、$ \phi = acos(\zeta) $ |
Note 1: 高周波に対する安定の確認については別途検討が必要 http://ysserve.wakasato.jp/Lecture/ControlMecha3/node23.html
Note 2: 時間おくれについては拡張Z変換を使います
http://ysserve.wakasato.jp/Lecture/ControlMecha3/node16.html
【参考】
1. UCLA -Winter 2011 - MAE 171B Digital Control of Physical Systems
Chapter 4 - Discrete-Time System Representation
http://ecee.colorado.edu/shalom/DTRep.pdf
2. Neuman, C. P., and C. S. Baradello. "DIGITAL TRANSFER-FUNCTIONS FOR MICROCOMPUTER CONTROL." IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS 9.12 (1979): 856-860.
3. 株式会社デンソー, 制御装置. 特開2010-19105. 2010-1-28.