2状態1入力システム:最適制御入力 (2次遅れ系の状態フィードバック制御)

バネマスダンパ系に対応した状態制御を考えるために、
2状態1入力システムに対する状態フィードバック+積分制御する系を考える
(1状態1入力システムと同様)

バネマスダンパ系プラントを扱ったエントリーと同じM, c, kを使い
$ A\equiv \begin{bmatrix}  0 & 1 \\ -\frac{c}{M}&-\frac{k}{M} \end{bmatrix}\equiv \begin{bmatrix}  0 & 1 \\ -a_1&-a_2 \end{bmatrix}$ ,$ B\equiv  \begin{bmatrix} 0 \\ \frac{b}{M} \end{bmatrix}\equiv  \begin{bmatrix} 0 \\ K \end{bmatrix}$
そして、$ X \equiv \begin{bmatrix} x \\ \dot{x} \end{bmatrix} $とすると、

$ X $を行列のまま扱うと少しわかりにくいので
同伴型[1]に展開してブロック線図を描くと

この時、
\[ \frac{d}{dt} \begin{bmatrix} z \\ x \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} z \\ x \\ \dot{x} \end{bmatrix} +\begin{bmatrix} 0 \\ 0 \\ K \end{bmatrix}u \]
この系に対して最適制御入力を求める。
\[J = \int_{0}^{\infty}\left \{ \begin{bmatrix} z & x & \dot{x} \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & q_1 & 0 \\ 0 & 0 & q_2 \\ \end{bmatrix} \begin{bmatrix} z \\ x \\ \dot{x} \end{bmatrix}+ru^2\right \}dt\]
この方程式を満たす対称正定行列 Pはリカッチ方程式
\[A^T P+PA+Q-PBR^{-1}B^TP=0\]
を満たす。

ただし、
\[P\equiv \begin{bmatrix} X_1 & X_2 & X_3 \\ X_2 & X_4 & X_5 \\ X_3 & X_5 & X_6 \\ \end{bmatrix}, X_1,X_2,X_3,X_4,X_5,X_6>0\]

これを解いていくと
\[\begin{bmatrix} -\frac{K^2 X_3^2}{r}+1 & -\frac{K^2 X_3 X_5}{r}-a_1 X_3 + X_1 & -\frac{K^2 X_3 X_6}{r}-a_2 X_3 + X_2 \\ -\frac{K^2 X_3 X_5}{r}-a_1 X_3 + X_1 & -\frac{K^2 X_5^2}{r}-2 a_1 X_5 + 2 X_2 + q_1 & -\frac{K^2 X_5 X_6}{r}-a_1 X_6 - a_2 X_5 + X_3 + X_4 \\ -\frac{K^2 X_3 X_6}{r}-a_2 X_3 + X_2 & -\frac{K^2 X_5 X_6}{r}-a_1 X_6 - a_2 X_5 + X_3 + X_4 & -\frac{K^2 X_6^2}{r}-2 a_2 X_6 + 2 X_5 +q_2 \\ \end{bmatrix}=0 \]

これの一般解が複雑なので、式で表すと、
\[ X_3 = \frac{\sqrt{r}}{K} \]
\[ X_5 = \frac{K^2 X_6^2}{2r}+a_2X_6-\frac{q_2}{2}\]
\[ \frac{K^6}{4r^3}X_6^4 + \frac{K^4a_2}{r^2}X_6^3 +(\frac{K^2 a_2^2}{r}+\frac{a_1 K^2}{r}+\frac{q_2 K^4}{2r^2})X_6^2\\ +(\frac{K^2a_2q_2}{r}+2a_1 a_2+\frac{2}{\sqrt{r}})X_6 +(-\frac{2\sqrt{r}a_2}{K}-q_1+a_1 q_2)=0\]
$ X_6 $は4次方程式. この解を求めるには…>> 四次方程式の解 - 高精度計算サイト 

そして、$ X_6 $は以下を満たすように選ぶ.
\[ (X_2=) \frac{X_6}{\sqrt{r}}+\frac{a_2 \sqrt{r}}{K} > 0 \]
\[ (X_1=) \frac{K X_4}{\sqrt{r}}+\frac{a_1 \sqrt{r}}{K}>0 \]
\[ (X_5=) \frac{K^2 X_4 X_6}{r}+a_1 X_6 + a_2 X_4 - \frac{\sqrt{r}}{K}>0 \]

最適制御フィードバックゲインは
\[FB=-R^{-1}B^TP=-\frac{K}{r}\begin{bmatrix} X_3 & X_5 & X_6 \end{bmatrix}  \]
この行行列の1項目からPID制御でいうところの$ K_i, K_p, K_d $に相当する.
(この場合、最適制御はPID制御チューニングの方法の一種ともいえます)

[1] : 制御工学 (JSMEテキストシリーズ) など
         

1状態1入力システム:最適制御入力 (1次遅れ系の状態フィードバック制御)

1状態1入力システムに対して定常偏差を補償できるよう
状態フィードバック + 積分制御する系を考えます[1]

\[ \frac{d}{dt}\binom{z}{x}=\begin{bmatrix} 0 & 1\\ 0 & -a \end{bmatrix}\binom{z}{x}+\binom{0}{K}u \]

この系に対して最適制御入力を求める
(※ この時プラントは $ \tau = 1/a $, ゲイン $ 1/a $ の1次遅れ系)

\[J = \int_{0}^{\infty}\left \{ (z, x)\begin{bmatrix} 1 & 0\\ 0 & q \end{bmatrix} \binom{z}{x}+ru^2\right \}dt\]

この方程式を満たす対称正定行列 Pはリカッチ方程式
\[A^T P+PA+Q-PBR^{-1}B^TP=0\]
を満たす。[1] ($ A\equiv \begin{bmatrix} 0 & 1 \\ 0 & -a \end{bmatrix}$ ,$ B\equiv  \binom{0}{K}$)
ただし、
\[P\equiv \begin{bmatrix} X_1 & X_2\\ X_2 & X_3 \end{bmatrix}, X_1,X_2,X_3>0\]

これを解いていくと、
\[\begin{bmatrix} -\frac{K^2X_2^2}{r}+1 & \frac{K^2X_2X_3}{r}-aX_2+X_1\\ \frac{K^2X_2X_3}{r}-aX_2+X_1 & -\frac{K^2X_3^2}{r}+2X_2-2aX_3+q \end{bmatrix}=0\]
\[P = \frac{1}{K}\begin{bmatrix} \sqrt{a^2r+2r^{\frac{1}{2}}+q} & \sqrt{r} \\ \sqrt{r} & -ar+ \sqrt{a^2r^2+2r^{\frac{3}{2}}+rq} \end{bmatrix}\]
が求まる。

したがって、最適制御フィードバックゲインは
\[FB=-R^{-1}B^TP\\ =\begin{bmatrix} -\frac{1}{\sqrt{r}} & a-\sqrt{a^2+\frac{2}{\sqrt{r}}+\frac{q}{r}} \end{bmatrix}\]
このときPI制御のゲイン $ K_p, K_i $と比較すると以下のように一致する.
\[K_p = - a+\sqrt{a^2+\frac{2}{\sqrt{r}}+\frac{q}{r}}\]
\[K_i = \frac{1}{\sqrt{r}}\]

サーボ系で考える場合、目標の与え方によってI+P制御となったり、PI制御となったり違いが出ます.

1. 通常の状態フィードバック(I+P制御相当):
\[u=\begin{bmatrix} K_i & K_p \end{bmatrix}\left(\binom{r}{0}-\binom{z}{x}\right)\]



2. PI制御相当(のはず):
\[u=\begin{bmatrix} K_i & K_p \end{bmatrix}\left(\binom{r}{r}-\binom{z}{x}\right)\]

参考

[1]: Integral action in state feedback control - Prof. Alberto Bemporad
        http://cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/08-integral-action.pdf

[2] : 制御工学 (JSMEテキストシリーズ) など

連続系PID制御 : DCモータの速度制御

プラントをDCモータに限定して、電圧(PWMなど)で速度制御する場合を考えます.
今回は、PID制御とI+PD制御について伝達関数を求めます.

1. PID制御の場合

このシステムのブロック線図は、

記号LRKeJ
定義・単位電機子インダクタンス
[H]
電機子抵抗
[Ohm]
誘起電圧定数
[V/(rad/s)]

トルク定数
[Nm/A]

※ 両者等しい 
モータ軸イナーシャ
[kg m^2]

これを等価変換すると、バネマスダンパ系にPID制御を適用した場合と同等のシステムと考えられます.

この時の負荷トルクTd[Nm]および速度指令値ω*[rad/s]に対する応答は、

\[ \omega = \frac{K_e K_d s^2+K_e K_p s+K_e K_i}{LJs^3+(RJ+K_e K_d)s^2+(K_e^2+K_e K_p)s+K_e K_i}\omega^{*} - \frac{s}{LJs^3+(RJ+K_e K_d)s^2+(K_e^2+K_e K_p)s+K_e K_i} (Ls+R)Td \]


2. I+PD制御の場合

ブロック線図は、

これを同様に等価変換すると

この時の負荷トルクTd[Nm]および速度指令値ω*[rad/s]に対する応答は、

\[ \omega = \frac{K_e K_i}{LJs^3+(RJ+K_e K_d)s^2+(K_e^2+K_e K_p)s+K_e K_i}\omega^{*} - \frac{s}{LJs^3+(RJ+K_e K_d)s^2+(K_e^2+K_e K_p)s+K_e K_i}(Ls+R)Td \]

となります.

同じ$ K_p, K_d, K_i $のパラメータを使った場合で比較すると、
PID制御と比較してI+PD制御は
  ・ 目標追従の面で少しおとなしい応答
  ・ 外乱に対しては同じ応答性を有する
といえそう.

その分、逆に、その分、$ K_p, K_d, K_i $をもう少し過激にチューニングして、
外乱に対する応答を良くする考え方もできるのではないだろうか?

I+PD制御という構成は状態フィードバック制御で良く使われる考えだと思います.